Sicp Exercise 2.56

Exercise 2.56.  Show how to extend the basic differentiator to handle more kinds of expressions. For instance, implement the differentiation rule

by adding a new clause to the deriv program and defining appropriate procedures exponentiation?, base, exponent, and make-exponentiation. (You may use the symbol ** to denote exponentiation.) Build in the rules that anything raised to the power 0 is 1 and anything raised to the power 1 is the thing itself.

 

Sicp Exercise 2.38

Exercise 2.38.  The accumulate procedure is also known as fold-right, because it combines the first element of the sequence with the result of combining all the elements to the right. There is also a fold-left, which is similar to fold-right, except that it combines elements working in the opposite direction:

(define (fold-left op initial sequence)
(define (iter result rest)
(if (null? rest)
result
(iter (op result (car rest))
(cdr rest))))
(iter initial sequence))

What are the values of

(fold-right / 1 (list 1 2 3))
(fold-left / 1 (list 1 2 3))
(fold-right list nil (list 1 2 3))
(fold-left list nil (list 1 2 3))

Give a property that op should satisfy to guarantee that fold-right and fold-left will produce the same values for any sequence.

 

Sicp Exercise 2.37

Exercise 2.37.  Suppose we represent vectors v = (vi) as sequences of numbers, and matrices m = (mij) as sequences of vectors (the rows of the matrix). For example, the matrix

is represented as the sequence ((1 2 3 4) (4 5 6 6) (6 7 8 9)). With this representation, we can use sequence operations to concisely express the basic matrix and vector operations. These operations (which are described in any book on matrix algebra) are the following:

We can define the dot product as17

(define (dot-product v w)
(accumulate + 0 (map * v w)))

Fill in the missing expressions in the following procedures for computing the other matrix operations. (The procedure accumulate-n is defined in exercise 2.36.)

(define (matrix-*-vector m v)
(map <??> m))
(define (transpose mat)
(accumulate-n <??> <??> mat))
(define (matrix-*-matrix m n)
(let ((cols (transpose n)))
(map <??> m)))

 

Sicp Exercise 2.36

Exercise 2.36.  The procedure accumulate-n is similar to accumulate except that it takes as its third argument a sequence of sequences, which are all assumed to have the same number of elements. It applies the designated accumulation procedure to combine all the first elements of the sequences, all the second elements of the sequences, and so on, and returns a sequence of the results. For instance, if s is a sequence containing four sequences, ((1 2 3) (4 5 6) (7 8 9) (10 11 12)), then the value of (accumulate-n + 0 s) should be the sequence (22 26 30). Fill in the missing expressions in the following definition of accumulate-n:

(define (accumulate-n op init seqs)
(if (null? (car seqs))
nil
(cons (accumulate op init <??>)
(accumulate-n op init <??>))))

 

Sicp Exercise 2.34

Exercise 2.34.  Evaluating a polynomial in x at a given value of x can be formulated as an accumulation. We evaluate the polynomial

using a well-known algorithm called Horner’s rule, which structures the computation as

In other words, we start with an, multiply by x, add an-1, multiply by x, and so on, until we reach a0.16 Fill in the following template to produce a procedure that evaluates a polynomial using Horner’s rule. Assume that the coefficients of the polynomial are arranged in a sequence, from a0 through an.

(define (horner-eval x coefficient-sequence)
(accumulate (lambda (this-coeff higher-terms) <??>)
0
coefficient-sequence))

For example, to compute 1 + 3x + 5x3 + x5 at x = 2 you would evaluate

(horner-eval 2 (list 1 3 0 5 0 1))

 

Sicp Exercise 2.33

Exercise 2.33.  Fill in the missing expressions to complete the following definitions of some basic list-manipulation operations as accumulations:

(define (map p sequence)
(accumulate (lambda (x y) <??>) nil sequence))
(define (append seq1 seq2)
(accumulate cons <??> <??>))
(define (length sequence)
(accumulate <??> 0 sequence))